Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	000	00	00	000000	0

Nonlinear Meta-Regression for Benefit Transfer

Klaus Moeltner

Presented at the 2018 ACES Meetings, Washington, DC Area, Dec. 3-6, 2018

This research was partially funded under U.S. EPA contract number EP-C-13-039. The findings, conclusions, and views expressed in this paper are those of the author and do not necessarily represent those of the U.S.

EPA. No agency endorsement should be inferred.

Intro ●00000	Adding-up 000	NL-MRM 00	Model Comparison	Empirical Example 000000	Conclusion 0
Intro					
			[
			America's Wetland? A National Survey of Williamon to Pay for Best	eration of Louisiana's	

Marine Science Public perceptions of wetland

Tan-Gran Kim¹⁴ and Daniel B. Perrolia²⁴

Treamly closer them, costd with the will served

RESOURCE and ENERGY

curve and Feorgy Teamonies 20(1098) 179-296

Resource quality information

willingness to pay in contin

Dicitation of valid stransmiss of continent, value in

market must be to aware landlarity by moviding later. qualky is important when incompletely informed res

resource quality which diverses from trac quality. Differ

we test for information effects in a debetomous choic

Glenn C. Blomauist **, John

December of Antocky, Laborator, K.

Bearined 7 April 1995 accepted T No.

ECONOMICS

aboution. We find that information about quality is a dewedged generation. Information about researce gapters sill result in more valid valuations of charges in allocat Revente Weitents Information Contingent valuation

ML complexities (25

Conservation appendix Department of Economics, Department 4044 Tel: 11406-257/904 Ees: 11496-323-1920

4928 2655 /98,/189.00 () 1998 Fluority Science B.V. All data

The eathers with to any This research was condu Public and Private Land

in the lower II is item, purious the facilities for the enterthind body of and gain angular point A body for purious that a substantial component of this enterplaney solutions (TF) hypersteps of Components, control provides that the substantial component of the substantial solution is a substantial (TF) and the substantial component of the provides of the substantial component of the substantial component of the provides of the substantial component on the substantial component of the provides of the substantial component on the substantial component on the substantial component of the substantial component on the su

0.203 International General for the Exploration of the Son. Published by Oxford University Perss. All sights enserved

COMBINING ECONOMIC AND ECOLOGICAL INDICATORS TO PRIORITIZE SALT MARSH RESTORATION ACTIONS

ROBERT J. JOHNSTON, GIBELE MAGNUSSON, MARINA J. MAZZOTTA, AND JAMES & OPALLICH.

Restoration of damaged or degraded ecovy- public preferences. Rhode Island residents' terms often represents an important com- preferences for sail many functions were esti-tation of environmental management model through an arritation of stand putter (National Research Council). However, lands ance (comprist) analysis. The two models were the typical product of the provided in the provided the p manageries protections gui intersi resourcines ter the pication potential on werken approx-acions. The readel integrates information more given a first distantion budget. This po-covering both the production (stepply) and per discusses the dosign, implementation and when (contrast) of version labelies finations. The statistical of the integrated model, and pro-Athlough the project focuenes on and manches wides an example of now dor model mode to in Narraganeous Higs (RE), the approach is used to piconistic matter theorem economics. more generally applicable to assessing habitat policies. Ecological production relationships deter-mine lielo between salt marsh attributes and Estimating Production Relationships: The Expect Survey mass trues network can marke herroreter and associated babitst functions. Although there is an expressive ecological licenstare on these re-

 nerrest the literature in order to quantify that the provides of wildle better to evalued to a range of species (e.g., Bartick, Bry soltmersbew the basis) box restortion actions would contribute to the more applicable automatic to consignment horizer for a range of appear in e.g., Burchek, Buy softmatricke, Sinskovergewenter a primary et al., Able and Hagan, Wignad et al.). For historescence adversioped a survey of sections to automatively differentiate among alterna-perdissional beliefting a consensus of experi-tive rotatemation data. personant to accuracy a conservation of apperl. It we internate near the closer and personant or accuracy and personant accuracy was designed to determine the currant to physical marchast and personant relationships which physical accuracy of salt marches and

Contol Wetlands

Final Project Report

Department of Agricultural Economics

Restand April 1, 2013 Daniel R. Petrolia *

by ecological (physical) relationships, social of birds, tide, and shallball

Amer. J. Apr. Kom. 94 (Nature 5, 2003) 1362-1370 Convided 2002 American Autoritory Economics American

Survey development required approxi-mately two stars, and irredwed estatistics

This content & week acted from 12X 123.09.29 or 7th 13 alog 2212 20.31 doi 1312

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
0●0000	000	00	00	000000	0
Intro					

LONDOÑO CADAVID AND ANDO: VALUES OF STORMWATER MANAGEMENT OUTCOMES

Suppose your city could do a project that would change features of stormwater control near you. Options A and B are the only choices you can have instead of your current situation. Which option would you choose? Please read all the features of each option and then check the box that represents your choice below. If you don't like option A or B, then choose the box "current situation". that means no project is done, so flooding and environmental quality stay the same and there is no cost.

	Option A	Option B	Current situation
Number of street floods within 1 block of your house	25% less frequent than current	50% less frequent than current	No change
Number of floods in your backyard	50% less frequent than current	50% less frequent than current	No change
Number of floods in your basement	50% less frequent than current	25% more frequent than current	No change
Change in quality of water in nearby streams	better quality: fishable	better quality: swimmable	No change: boatable
Water infiltration	less infiltration: very low	more infiltration: high	No change: medium infiltration
Annual stormwater utility bill	\$20	\$40	ŝo
I would choose:	ΠA	В	Current situation

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
00●000	000	oo	00		0
Intro					

	id	origstudy	studyid	wtp	QO	Q1	choiceexp	thesis	Inyear
1	1004.1	1004	1	180.7128	70	50	0	0	1.0986123
2	1017.1	1017	2	240.93441	50	70	0	0	1.3862944
з	1017.2	1017	2	75.665351	50	70	0	0	1.3862944
4	1041.1	1041	3	36.252	25	50	0	0	0
5	1041.11	1041	3	19.836	50	70	0	0	0
6	1041.12	1041	3	57.228	25	70	0	0	0
7	1041.14	1041	3	84.132	25	50	0	0	0
8	1041.15	1041	3	42.864	50	70	0	0	0
9	1041.16	1041	3	137.256	25	70	0	0	0
10	1041.2	1041	3	40.128	25	50	0	0	0
11	1041.3	1041	3	28.272	50	70	0	0	0
12	1041.4	1041	3	71.136	25	70	0	0	0
13	1041.6	1041	3	66.804	25	50	0	0	0
14	1041.7	1041	3	28.5	50	70	0	0	0
15	1041.8	1041	3	97.812	25	70	0	0	0
16	1063.1	1063	4	390.6781	50	70	0	0	1.6094379
17	1063.2	1063	4	404.19484	50	90	0	0	1.6094379
18	1070.1	1070	5	255.00884	50	90	0	0	2.7080502
19	1070.2	1070	5	262.28511	50	90	0	o	2.7080502
20	1085.1	1085	6	124.03994	25	45	0	0	1.9459101

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000					
Intro					

$$log(wtp) = A + \beta log(y) + \gamma_0 q_0 + \gamma_\Delta (q_1 - q_0), \text{ or}$$
$$wtp = y^\beta exp(A + \gamma_0 q_0 + \gamma_\Delta (q_1 - q_0))$$

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	000	00	00	000000	
Intro					

Sensitivity to scope?

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000					
Intro					

Sensitivity to scope?

$$rac{\partial wtp}{\partial q_1} | q_0 = \gamma_\Delta * wtp, \ \gamma_\Delta > 0?$$

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
00000●	000	oo	00		0
Intro					

Adding-up property?

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
00000●	000	oo	00		0
Intro					

Adding-up property?

$$wtp(q_2 - q_0) \stackrel{?}{=} wtp(q_1 - q_0) + wtp(q_2 - q_1)$$

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
00000●	000	oo	00	000000	0
Intro					

Adding-up property?

$$wtp(q_2 - q_0) \stackrel{?}{=} wtp(q_1 - q_0) + wtp(q_2 - q_1)$$

$$\begin{split} y^{\beta} & \exp\left(A\right) \exp\left(\gamma_{0}q_{0} + \gamma_{\Delta}\left(q_{2} - q_{0}\right)\right) \neq \\ y^{\beta} & \exp\left(A\right) * \\ & \left(\exp\left(\gamma_{0}q_{0} + \gamma_{\Delta}\left(q_{1} - q_{0}\right)\right) + \exp\left(\gamma_{0}q_{1} + \gamma_{\Delta}\left(q_{2} - q_{1}\right)\right)\right), \end{split}$$

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	●○○	oo	00		0
Adding-up					

• Adding-Up violation is a real "practical headache"

Intro 000000	Adding-up ●00	NL-MRM oo	Model Comparison	Empirical Example	Conclusion 0
Adding-up					

- Adding-Up violation is a real "practical headache"
- Many EPA policies proceed in increments over time and/or space

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	●○○	oo	00		0
Adding-up					

- Adding-Up violation is a real "practical headache"
- Many EPA policies proceed in increments over time and/or space
- Example: Chesapeake Bay watershed implementation plan to reduce TMDLs

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	●00	00	00		0
Adding-up					

- Adding-Up violation is a real "practical headache"
- Many EPA policies proceed in increments over time and/or space
- Example: Chesapeake Bay watershed implementation plan to reduce TMDLs
- Multiple phases across sectors and jurisdictions

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	000	00	00	000000	
Adding-up					

- Adding-Up violation is a real "practical headache"
- Many EPA policies proceed in increments over time and/or space
- Example: Chesapeake Bay watershed implementation plan to reduce TMDLs
- Multiple phases across sectors and jurisdictions
- Example: Steam Electric Power Plants rule

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	●○○	00	00		0
Adding-up					

- Adding-Up violation is a real "practical headache"
- Many EPA policies proceed in increments over time and/or space
- Example: Chesapeake Bay watershed implementation plan to reduce TMDLs
- Multiple phases across sectors and jurisdictions
- Example: Steam Electric Power Plants rule
- EPA needs to know partial benefits from partial cleanup AND benefits "still on the table"

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	●○○	00	00		0
Adding-up					

- Adding-Up violation is a real "practical headache"
- Many EPA policies proceed in increments over time and/or space
- Example: Chesapeake Bay watershed implementation plan to reduce TMDLs
- Multiple phases across sectors and jurisdictions
- Example: Steam Electric Power Plants rule
- EPA needs to know partial benefits from partial cleanup AND benefits "still on the table"
- First raised in the peer-reviewed literature by Newbold et al. (2018)

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	○●○	oo	00		0
Adding-up					

Example: from "boatable" (q=2.5) to "fishable" (q=5.1) to "swimmable" (q=7.0)

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	○●○	oo	00	000000	O
Adding-up					

Example: from "boatable" (q=2.5) to "fishable" (q=5.1) to "swimmable" (q=7.0)

$$\hat{\gamma}_0 = -0.124$$

 $\hat{\gamma}_\Delta = 0.2095$
 $q_0 = 2.5, \quad q_1 = 5.1, \quad q_2 = 7.0$

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	○●○	oo	00		O
Adding-up					

Example: from "boatable" (q=2.5) to "fishable" (q=5.1) to "swimmable" (q=7.0)

$$\hat{\gamma}_0 = -0.124$$

 $\hat{\gamma}_\Delta = 0.2095$
 $q_0 = 2.5, \quad q_1 = 5.1, \quad q_2 = 7.0$

$$\frac{wtp(q_1 - q_0) + wtp(q_2 - q_1)}{wtp(q_2 - q_0)} = 1.09$$

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	00●	oo	00	000000	0
Adding-up					

Example: smaller steps around "fishable"

Intro 000000	Adding-up 00●	NL-MRM oo	Model Comparison	Empirical Example	Conclusion 0
Adding-up					

Example: smaller steps around "fishable"

$$\hat{\gamma}_0 = -0.124$$

 $\hat{\gamma}_\Delta = 0.2095$
 $q_0 = 5.0, \quad q_1 = 5.1, \quad q_2 = 5.2$

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	00●	oo	00	000000	O
Adding-up					

Example: smaller steps around "fishable"

$$\hat{\gamma}_0 = -0.124$$

 $\hat{\gamma}_\Delta = 0.2095$
 $q_0 = 5.0, \quad q_1 = 5.1, \quad q_2 = 5.2$

$$\frac{wtp(q_1 - q_0) + wtp(q_2 - q_1)}{wtp(q_2 - q_0)} = 1.95$$

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	000	●0	00		0
NL-MRM					

$$wtp = \int_{q_0}^{q_1} y^{\beta} \exp(A) \exp(\gamma q) dq =$$

$$y^{\beta} \exp(A) \left(\frac{1}{\gamma} (\exp(\gamma q_1) - \exp(\gamma q_0))\right)$$

$$\log(wtp) = A + \beta \log(y) + \log\left(\frac{1}{\gamma} (\exp(\gamma q_1) - \exp(\gamma q_0))\right)$$

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	000	○●		000000	O
NL-MRM					

$$\begin{split} y_{is} &= \mathbf{x}_{is}' \boldsymbol{\beta} + \log \left(\gamma^{-1} \left(\exp \left(\gamma q_{1,is} \right) - \exp \left(\gamma q_{0,is} \right) \right) \right) + u_s + \epsilon_{is} \\ u_s &\sim n \left(0, \sigma_u^2 \right), \\ \epsilon_{is} &\sim n \left(0, \sigma_\epsilon^2 \omega_{is} \right), \quad \text{where} \quad \omega_{is} \sim ig \left(\frac{\nu}{2}, \frac{\nu}{2} \right) \end{split}$$

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion	
000000	000	oo	●0	000000	0	
Model Comparison						

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion	
000000	000	oo	●0	000000	0	
Model Comparison						

• 140 obs., 51 studies

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion	
000000	000	oo	●0	000000	0	
Model Comparison						

- 140 obs., 51 studies
- wtp for water quality change, 100-point scale

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion	
000000	000	oo	●0	000000	0	
Model Comparison						

- 140 obs., 51 studies
- wtp for water quality change, 100-point scale
- 22 explanatory variables

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion	
000000	000	oo	●0	000000	0	
Model Comparison						

- 140 obs., 51 studies
- wtp for water quality change, 100-point scale
- 22 explanatory variables
- used by EPA to inform steam electric rule revision (ongoing)

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion	
000000	000	00	○●		0	
Model Comparison						

Model comparison via Bayes Factors

NL-MRM vs:	log-Bayes Factor
MRM1linlin	-24.285
MRM1linlog	-20.958
MRM1loglog	-23.742
MRM2	-6.560
MRM2Slin	-9.053
MRM2Slog	-23.870

	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion	
000000	000	00	00	•00000		
Empirical Example						

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion		
000000	000	oo		•00000	0		
Empirical Example							

• riperian ecosystem

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	000	oo		•00000	0
Empirical Exam	ıple				

- riperian ecosystem
- can be borrow from remaining (lake) data?

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	000	oo		•00000	0
Empirical Exam	ıple				

- riperian ecosystem
- can be borrow from remaining (lake) data?
- Bayesian Stochastic Search Variable Selection

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	000	oo		00●000	0
Empirical Exam	iple				

$$\begin{aligned} \mathbf{y}_{s} &= \mathbf{X}_{1s} \boldsymbol{\beta}_{x} + \mathbf{M}_{s} \boldsymbol{\beta}_{m} + \mathbf{Z}_{s} \boldsymbol{\delta} + \\ \log \left(\left(\gamma + \delta_{\gamma} \mathbf{d}_{s} \right)^{-1} \left(\exp \left(\left(\gamma + \delta_{\gamma} \mathbf{d}_{s} \right) \mathbf{q}_{1,s} \right) - \exp \left(\left(\gamma + \delta_{\gamma} \mathbf{d}_{s} \right) \mathbf{q}_{0,s} \right) \right) \right) \\ &+ \mathbf{i}_{s} u_{s} + \epsilon_{s} \end{aligned}$$

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	000	oo	00		0
Empirical Exam	ple				

$$\begin{aligned} \mathbf{y}_{s} &= \mathbf{X}_{1s} \boldsymbol{\beta}_{x} + \mathbf{M}_{s} \boldsymbol{\beta}_{m} + \mathbf{Z}_{s} \delta + \\ \log \left(\left(\gamma + \delta_{\gamma} \mathbf{d}_{s} \right)^{-1} \left(\exp \left(\left(\gamma + \delta_{\gamma} \mathbf{d}_{s} \right) \mathbf{q}_{1,s} \right) - \exp \left(\left(\gamma + \delta_{\gamma} \mathbf{d}_{s} \right) \mathbf{q}_{0,s} \right) \right) \right) \\ &+ \mathbf{i}_{s} u_{s} + \epsilon_{s} \end{aligned}$$

$$p(\delta_j) = p_0 * n(0, c^2 t^2) + (1 - p_0) n(0, t^2),$$

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	000	oo	00		0
Empirical Exam	ple				

Scenario 1: WQI 25-51, 51-70 (boatable, fishable, swimmable)

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	000	00	00		O
Empirical Exam	iple				

Scenario 1: WQI 25-51, 51-70 (boatable, fishable, swimmable)

BT results, SSVS, total WTP (\$)

	NL-MRM				MRM1linlin		
scenario (WQI)	low	mean	high	low	mean	high	
25 to 51	0.00	50.99	156.53	0.72	32.33	85.59	
51 to 70	0.00	26.33	80.10	0.94	24.08	63.65	
25 to 70	0.00	77.19	235.89	0.91	41.12	108.12	
adding-up error		0.17%			37.18%		

Intro 000000	Adding-up 000	NL-MRM oo	Model Comparison	Empirical Example	Conclusion 0
Empirical Exam	ple				

Scenario 2: WQI 73-73.5, 73.5-74 (option D of Steam Electric rule)

Intro 000000	Adding-up 000	NL-MRM 00	Model Comparison	Empirical Example	Conclusion O
Empirical Exam	ple				

Scenario 2: WQI 73-73.5, 73.5-74 (option D of Steam Electric rule)

		NL-MRM			MRM1linlin			
scenario (WQI)	low	mean	high	low	mean	high		
73 to 73.5	0.00	0.57	1.74	0.46	16.26	43.89		
73.5 to 74	0.00	0.57	1.73	0.47	16.21	43.79		
73 to 74	0.00	1.14	3.47	0.28	16.36	43.98		
adding-up error		0.18%			98.40%			

BT results, SSVS, total WTP (\$)

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	000	oo	00		0
Empirical Exam	nple				

- Option D of SER: 1.14/HH

Intro 000000	Adding-up 000	NL-MRM oo	Model Comparison	Empirical Example	Conclusion 0
Empirical Exam	ıple				

- Option D of SER: 1.14/HH
- 84.5 million HHs affected

	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion	
000000	000	00	00	000000		
Empirical Example						

- Option D of SER: 1.14/HH
- 84.5 million HHs affected
- Benefits: \$96 million (2007 dollars)

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	000	oo	00	000000	•
Conclusion					

• Existing MRMs for quality change theoretically flawed

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	000	oo	00	000000	•
Conclusion					

- Existing MRMs for quality change theoretically flawed
- Adding-Up: serious problem of high practical relevance

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	000	oo		000000	•
Conclusion					

- Existing MRMs for quality change theoretically flawed
- Adding-Up: serious problem of high practical relevance
- NL-MRM provides compromise of theoretical consistency and reasonable empirical fit

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	000	00	00	000000	
Conclusion					

- Existing MRMs for quality change theoretically flawed
- Adding-Up: serious problem of high practical relevance
- NL-MRM provides compromise of theoretical consistency and reasonable empirical fit
- Bayesian methods allow for rigorous model comparison, full exploitation of meta-data for BT application

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	000	00	00	000000	
Conclusion					

- Existing MRMs for quality change theoretically flawed
- Adding-Up: serious problem of high practical relevance
- NL-MRM provides compromise of theoretical consistency and reasonable empirical fit
- Bayesian methods allow for rigorous model comparison, full exploitation of meta-data for BT application

Intro	Adding-up	NL-MRM	Model Comparison	Empirical Example	Conclusion
000000	000	oo		000000	•
Conclusion					

- Existing MRMs for quality change theoretically flawed
- Adding-Up: serious problem of high practical relevance
- NL-MRM provides compromise of theoretical consistency and reasonable empirical fit
- Bayesian methods allow for rigorous model comparison, full exploitation of meta-data for BT application

THANK YOU!